Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Pollut ; 347: 123661, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417605

RESUMO

Metal and nutrient pollution, soil erosion, and alterations in climate and hydrology are prevalent issues that impact the water quality of riverine systems. However, integrated approaches to assess and isolate causes and paths of river water pollution are scarce, especially in the case of watersheds impacted by multiple hazardous activities. Therefore, a framework model for investigating the multiple sources of river water pollution was developed. The chosen study area was the Paraopeba River basin located in the Minas Gerais, Brazil. Besides multiple agriculture, industrial, and urban pollution sources, this region was profoundly affected by the rupture of the B1 tailings dam (in January 2019) at the Córrego do Feijão mine, resulting in the release of metal-rich waste. Considering this situation, thirty-nine physicochemical and hydromorphological parameters were examined in the Paraopeba River basin, in the 2019-2023 period. The analysis involved various statistical techniques, including bivariate and multivariate methods such as correlation analysis, principal component analysis, and clustering. The Paraopeba River was mainly impacted by metal contamination resulting from the dam collapse, whereas nutrient contamination, mainly from urban and industrial discharges, predominantly affected its tributaries. Additionally, the elevated concentrations of aluminum, iron, nitrate, and sulfate in both main river and tributaries can be attributed to diffuse and point source pollution. In terms of hydromorphology and soil type, the interaction between woody vegetation and erosion-resistant soils, especially latosols, contributes to the stability of riverbanks in the main river. Meanwhile, in the tributaries, the presence of neosols and sparse vegetation in urbanized areas promoted riverbank erosion potentially amplifying pollution. While the study was conducted in a particular watershed, the findings are based on a methodology that can be applied universally. Hence, the insights on surface water quality from this research can be a valuable resource for researchers studying watersheds with diverse pollution sources.


Assuntos
Rios , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Poluição da Água/análise , Qualidade da Água , Solo
2.
Sci Total Environ ; 922: 171183, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408653

RESUMO

Agricultural pesticides, nutrients, and habitat degradation are major causes of insect declines in lowland streams. To effectively conserve and restore stream habitats, standardized stream monitoring data and societal support for freshwater protection are needed. Here, we sampled 137 small stream monitoring sites across Germany, 83 % of which were located in agricultural catchments, with >900 citizen scientists in 96 monitoring groups. Sampling was carried out according to Water Framework Directive standards as part of the citizen science freshwater monitoring program FLOW in spring and summer 2021, 2022 and 2023. The biological indicator SPEARpesticides was used to assess pesticide exposure and effects based on macroinvertebrate community composition. Overall, 58 % of the agricultural monitoring sites failed to achieve a good ecological status in terms of macroinvertebrate community composition and indicated high pesticide exposure (SPEARpesticides status class: 29 % "moderate", 19 % "poor", 11 % "bad"). The indicated pesticide pressure in streams was related to the proportion of arable land in the catchment areas (R2 = 0.23, p < 0.001). Also with regards to hydromorphology, monitoring results revealed that 65 % of the agricultural monitoring sites failed to reach a good status. The database produced by citizen science groups was characterized by a high degree of accuracy, as results obtained by citizen scientists and professionals were highly correlated for SPEARpesticides index (R2 = 0.79, p < 0.001) and hydromorphology index values (R2 = 0.72, p < 0.001). Such citizen-driven monitoring of the status of watercourses could play a crucial role in monitoring and implementing the objectives of the European Water Framework Directive, thus contributing to restoring and protecting freshwater ecosystems.


Assuntos
Ciência do Cidadão , Praguicidas , Poluentes Químicos da Água , Animais , Invertebrados , Ecossistema , Rios , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Praguicidas/análise , Alemanha , Água
3.
Water Res ; 251: 121136, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246083

RESUMO

Agriculture impacts the ecological status of freshwaters through multiple pressures such as diffuse pollution, water abstraction, and hydromorphological alteration, strongly impairing riverine biodiversity. The agricultural effects, however, likely differ between agricultural types and practices. In Europe, agricultural types show distinct spatial patterns related to intensity, biophysical conditions, and socioeconomic history, which have been operationalised by various landscape typologies. Our study aimed at analysing whether incorporating agricultural intensity enhances the correlation between agricultural land use and the ecological status. For this, we aggregated the continent's agricultural activities into 20 Areas of Farming-induced Freshwater Pressures (AFFP), specifying individual pressure profiles regarding nutrient enrichment, pesticides, water abstraction, and agricultural land use in the riparian zone to establish an agricultural intensity index and related this intensity index to the river ecological status. Using the agricultural intensity index, nearly doubled the correlative strength between agriculture and the ecological status of rivers as compared to the share of agriculture in the sub-catchment (based on the analysis of more than 50,000 sub-catchment units). Strongest agricultural pressures were found for high intensity cropland in the Mediterranean and Temperate regions, while extensive grassland, fallow farmland and livestock farming in the Northern and Highland regions, as well as low intensity mosaic farming, featured lowest pressures. The results provide advice for pan-European management of freshwater ecosystems and highlight the urgent need for more sustainable agriculture. Consequently, they can also be used as a basis for European Union-wide and global policies to halt biodiversity decline, such as the post-2027 renewal of the Common Agricultural Policy.


Assuntos
Ecossistema , Rios , Monitoramento Ambiental/métodos , Agricultura/métodos , Europa (Continente)
4.
Environ Manage ; 72(2): 437-455, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36650383

RESUMO

Assessing the hydromorphological conditions of watercourses is a requirement of the Water Framework Directive (WFD) and national river status monitors (e.g., in Poland,the State Environmental Monitoring, and Water Monitoring coordinated by Chief Inspectorate of Environmental Protection). This paper evaluates the hydromorphological status of 10 watercourses (30 measurement sections) in Poland based on the multimetric Hydromorphological Index for Rivers (HIR). A new approach to the delineation of the river valley (small watercourses) is proposed. An analysis of the influence of river valley management on the value of HIR and its components was carried out using statistical methods (basic statistics, Mann-Whitney U Test and Ward's cluster analysis). In addition, the relationship between the components of the HDS (Hydromorphological Diversity Score) and HMS (Hydromorphological Modification Score) was analyzed (Spearman's Rank Correlation Coefficient). HIR values for the watercourse sections ranged from 0.553 to 0.825. HDS values ranged from 27.5 to 75.5 and HMS from 2.0 to 17.5. The results of the basic statistical analyses showed slight differences between the two river valley delineation methods. The Mann-Whitney U Test showed a significant difference in the test significance level of the HDS, HMS and HIR for the river valley delineation methods. Spearman's rank correlation analysis showed that most of the HDS and HMS parameters components had a low degree of correlation. The juxtaposition of the two methods for delineating a river valley and its influence on the HIR allows for a better understanding of the interdependence between its parameters.


Assuntos
Ecossistema , Rios , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais , Polônia
5.
Sci Total Environ ; 857(Pt 3): 159607, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36273564

RESUMO

The majority of central European streams are in poor ecological condition. Pesticide inputs from terrestrial habitats present a key threat to sensitive insects in streams. Both standardized stream monitoring data and societal support are needed to conserve and restore freshwater habitats. Citizen science (CS) offers potential to complement international freshwater monitoring while it is often viewed critically due to concerns about data accuracy. Here, we developed a CS program based on the Water Framework Directive that enables citizen scientists to provide data on stream hydromorphology, physicochemical status and benthic macroinvertebrates to apply the trait-based bio-indicator SPEARpesticides for pesticide exposure. We compared CS monitoring data with professional data across 28 central German stream sites and could show that both CS and professional monitoring identified a similar average proportion of pesticide-sensitive macroinvertebrate taxa per stream site (20 %). CS data were highly correlated to the professional data for both stream hydromorphology and SPEARpesticides (r = 0.72 and 0.76). To assess the extent to which CS macroinvertebrate data can indicate pesticide exposure, we tested the relationship of CS generated SPEARpesticides values and measured pesticide concentrations at 21 stream sites, and found a fair correlation similar to professional results. We conclude that given appropriate training and support, citizen scientists can generate valid data on the ecological status and pesticide contamination of streams. By complementing official monitoring, data from well-managed CS programs can advance freshwater science and enhance the implementation of freshwater conservation goals.


Assuntos
Ciência do Cidadão , Praguicidas , Poluentes Químicos da Água , Animais , Rios , Praguicidas/análise , Invertebrados , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Ecossistema
6.
Ecol Indic ; 141: 109046, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991319

RESUMO

Anthropogenic alteration of physical habitat structure in streams and rivers is increasingly recognized as a major cause of impairment worldwide. As part of their assessment of the status and trends in the condition of rivers and streams in the U.S., the U.S. Environmental Protection Agency's (USEPA) National Aquatic Resource Surveys (NARS) quantify and monitor channel size and slope, substrate size and stability, instream habitat complexity and cover, riparian vegetation cover and structure, anthropogenic disturbance activities, and channel-riparian interaction. Like biological assemblages and water chemistry, physical habitat is strongly controlled by natural geoclimatic factors that can obscure or amplify the influence of human activities. We developed a systematic approach to estimate the deviation of observed river and stream physical habitat from that expected in least-disturbed reference conditions. We applied this approach to calculate indices of anthropogenic alteration of three aspects of physical habitat condition in the conterminous U.S. (CONUS): streambed sediment size and stability, riparian vegetation cover, and instream habitat complexity. The precision and responsiveness of these indices led the USEPA to use them to evaluate physical habitat condition in CONUS rivers and streams. The scores of these indices systematically decreased with greater anthropogenic disturbance at river and stream sites in the CONUS and within ecoregions, which we interpret as a response of these physical habitat indices to anthropogenic influences. Although anthropogenic activities negatively influenced all three physical habitat indices in the least-disturbed sites within most ecoregions, natural geoclimatic and geomorphic factors were the dominant influences. For sites over the full range of anthropogenic disturbance, analyses of observed/expected sediment characteristics showed augmented flood flows and basin and riparian agriculture to be the leading predictors of streambed instability and excess fine sediments. Similarly, basin and riparian agriculture and non-agricultural riparian land uses were the leading predictors of reduced riparian vegetation cover complexity in the CONUS and within ecoregions. In turn, these reductions in riparian vegetation cover and complexity, combined with reduced summer low flows, were the leading predictors of instream habitat simplification. We conclude that quantitative measures of physical habitat structure are useful and important indicators of the impacts of human activities on stream and river condition.

7.
Ecol Indic ; 141: 109047, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991318

RESUMO

Rigorous assessments of the ecological condition of water resources and the effect of human activities on those waters require quantitative physical, chemical, and biological data. The U.S. Environmental Protection Agency's river and stream surveys quantify river and stream bed particle size and stability, instream habitat complexity and cover, riparian vegetation cover and structure, and anthropogenic disturbance activities. Physical habitat is strongly controlled by natural geoclimatic factors that co-vary with human activities. We expressed the anthropogenic alteration of physical habitat as O/E ratios of observed habitat metric values divided by values expected under least-disturbed reference conditions, where site-specific expected values vary given their geoclimatic and geomorphic context. We set criteria for good, fair, and poor condition based on the distribution of O/E values in regional least-disturbed reference sites. Poor conditions existed in 22-24% of the 1.2 million km of streams and rivers in the conterminous U.S. for riparian human disturbance, streambed sediment and riparian vegetation cover, versus 14% for instream habitat complexity. Based on the same four indicators, the percentage of stream length in poor condition within 9 separate U.S. ecoregions ranged from 4% to 42%. Associations of our physical habitat indices with anthropogenic pressures demonstrate the scope of anthropogenic habitat alteration; habitat condition was negatively related to the level of anthropogenic disturbance nationally and in nearly all ecoregions. Relative risk estimates showed that streams and rivers with poor sediment, riparian cover complexity, or instream habitat cover conditions were 1.4 to 2.6 times as likely to also have fish or macroinvertebrate assemblages in poor condition. Our physical habitat condition indicators help explain deviations in biological conditions from those observed among least-disturbed sites and inform management actions for rehabilitating impaired waters and mitigating further ecological degradation.

8.
Sci Total Environ ; 808: 151886, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822900

RESUMO

Fish are some of the most threatened vertebrates in the world due to their often-sensitive response to environmental changes. Major land-use changes in the European Alps have direct and indirect impacts on fish communities, and these impacts are expected to increase in the future. Therefore, the identification of factors that are associated with the distribution of fish communities is of great importance to develop guidelines for management, precautions and sustainable use of running waters. In this study, the relationship of various factors - landscape structure and land use, topography, morphology, hydrology, physical and chemical water characteristics, hormonally active substances, pesticides, food availability, fisheries and piscivores birds - with fish assemblages are analysed. Field data from 81 stream sections from 2001 metres above sea level (m.a.s.l.) down to 219 m.a.s.l. are used in the study. The results reveal that the number of fish species has a strong association with topographic characteristics in the catchment area as well as with landscape configuration. Fish abundance and biomass are associated mostly with land-use type, hydrology, morphology as well as topography. In addition, there are indirect connections between fish abundance and biomass through land-use type, topography, water properties and hydromorphology. The results clearly indicate that not a single factor, but a multitude of factors are associated with the fish communities in the Eastern European Alps.


Assuntos
Ecossistema , Peixes , Animais , Biomassa , Região dos Alpes Europeus , Pesqueiros , Rios
9.
Plants (Basel) ; 10(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34961179

RESUMO

Upland rivers across Europe still exhibit undisturbed conditions and represent a treasure that we cannot afford to lose. We hypothesize that the combination of pristine and modified conditions could demonstrate biological responses along the stressor gradients. Thus, the response of aquatic macrophyte communities to anthropogenic stressors along upland rivers in Bulgaria was studied. Six stressors were selected out of 36 parameters grouped into hydromorphological, chemical variables and combined drivers (catchment land use). The stressors strongly affected species richness on the basis of biological type (bryophytes vs. vascular plants) and ecomorphological type (hydrophytes vs. helophytes). Hydrological alteration expressed by the change of the river's base flow and altered riparian habitats has led to a suppression of bryophytes and a dominance of riverbank plant communities. Seventy-five percent of mountain sites were lacking bryophytes, and the vegetation at semi-mountainous sites was dominated by vascular plants. It can be concluded that hydropeaking, organic and inorganic pollution, and discontinuous urban structures caused important modifications in the aquatic macrophyte assemblages. Macrophyte abundance and the biological and ecomorphological type of aquatic macrophytes reflect multi-stressor effects in upland rivers.

10.
Sci Total Environ ; 794: 148696, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34217076

RESUMO

Dams modify geomorphology, water quantity, quality and timing of stream flows affecting ecosystem functioning and aquatic biota. In this study, we addressed the structural and functional macroinvertebrate community alterations in different instream mesohabitats of two Portuguese rivers impaired by dams. We sampled macroinvertebrates in riffles, runs and pools of river sites downstream of the dams (i.e. regulated; n = 24) and in sites without the influence of the dams (i.e. unregulated; n = 7), assessing a total of 64 mesohabitats, following late spring-early summer regular flows. We found a distinct taxonomic structure and trait composition of macroinvertebrate assemblages between regulated and unregulated flow sites, and also between mesohabitats in which the differences were more evident. When analysing each mesohabitat individually, the effect of flow regulation was detected only in run-type mesohabitats for both taxonomic and trait composition, leading us to infer that a selective macroinvertebrate assessment on run mesohabitats would be a valuable contribution to detect regulated flow effects on ecosystems impaired by dams. Additionally, there is evidence that respiration and locomotion traits could be effective tools to identify damming flow alterations. This study supports that the quality assessments of rivers impacted by dams could benefit from a sampling approach focused on run mesohabitats and the detection of some key traits, which would improve assessment accuracy.


Assuntos
Ecossistema , Invertebrados , Animais , Biota , Monitoramento Ambiental , Rios , Estações do Ano
11.
J Environ Manage ; 292: 112737, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991827

RESUMO

Rivers of the large Alpine valleys constitute iconic ecosystems that are highly threatened by multiple anthropogenic stressors. This stressor mix, however, makes it difficult to develop and refine conservation and restoration strategies. It is, therefore, urgent to acquire more detailed knowledge on the consequences and interactions of prevalent stressors on fish populations, in particular, on indicator species such as the European grayling Thymallus thymallus. Here, we conducted a multi-river, multi-stressor investigation to analyze the population status of grayling. Using explorative decision-tree approaches, we disentangled the main and interaction effects of four prevalent stressor groups: flow modification (i.e., hydropeaking), channelization, fragmentation, and water quality alteration. Moreover, using a modified variant of the bootstrapping method, pooled bootstrapping, we determined the optimal number of characteristics that adequately describe fish population status. In our dataset, hydropeaking had the strongest single effect on grayling populations. Grayling biomass at hydrological control sites was around eight times higher than at sites affected by hydropeaking. The primary parameters for predicting population status were downramping rate and peak amplitude, with critical ranges of 0.2-0.4 cm min-1 and 10-25 cm. In hydropeaking rivers, river morphology and connectivity were the preceding subordinated parameters. Repeating the procedure with pooled bootstrapping datasets strengthened the hypothesis that the identified parameters are most relevant in predicting grayling population status. Hence, hydropeaking mitigation based on ecological thresholds is key to protect and restore already threatened grayling populations. In hydropeaking rivers, high river network connectivity and heterogenous habitat features can dampen the adverse effects of pulsed-flow releases by offering shelter and habitats for all life cycle stages of fish. The presented approach of explorative tree analysis followed by post-hoc tests of identified effects, as well as the pooled bootstrapping method, offers a simple framework for researchers and managers to analyze multi-factorial datasets and draw solid management conclusions.


Assuntos
Rios , Salmonidae , Animais , Ecossistema , Hidrologia
12.
Environ Monit Assess ; 193(4): 226, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772363

RESUMO

Main river systems in large watersheds are mostly destroyed due to intense human activities. These rivers are modified by a number of water infrastructures such as dams, diversion weirs, flood control structures, and sediment traps. Such modifications alter the hydrology, continuity, and habitat quality of river waterbodies and degrade their overall ecological status. This study provides a systematic and quantitative assessment of river hydromorphology with a composite index based on four sets of criteria (i.e., hydrology, channel continuity, habitat quality, and bed modification) to assess the level of human intervention. The developed index is tested and implemented in Gediz River Basin in Western Anatolia (Turkey), which is one of the most important watersheds with regard to human settlements as well as agricultural and industrial production. The results of the developed index have revealed values between 42.36 and 88.14 on a 0-100 scale and a gradual decline in overall river hydromorphological quality along the flow path. The analysis has shown that barrier effects were found to be crucial in reduced river continuity and bed modification for flood control has resulted in degraded instream and riverbank habitat quality. The developed index methodology can serve as a systematic tool for assessing the hydromorphology and its associated influence in the ecological status of rivers. It can further assist the decision-makers in planning and prioritizing river restoration projects.


Assuntos
Monitoramento Ambiental , Rios , Ecossistema , Humanos , Hidrologia , Turquia
13.
J Environ Manage ; 277: 111452, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075653

RESUMO

River infrastructure is one of the primary threats to riverine ecosystems globally, altering hydromorphological processes and isolating habitats. Instream barriers and low-head dams can have significant effects on system connectivity, but despite this, very few empirical studies have assessed the impacts of these structures on suspended sediment transport. Through a paired turbidity study over a 20-month monitoring period we investigated the differences in suspended sediment flux above and below two low-head dams in the south-east of Ireland. Using sediment balance as a proxy for sediment storage, results showed that a net-export of sediment from the study reach occurred for 68% of the high-flow events analysed. As the primary controls on sediment dynamics at the downstream reach depend on sediment availability from upstream, we argue that these results indicate the presence of a substantial local source of sediment between monitoring stations that cannot be explained by natural intra-reach erosional processes. Here we hypothesise that as sediment supply from the catchment becomes exhausted, the structure's impounded zone (typically considered a depositional area) provides a major sediment source to the downstream reach. Our rationale is that if sediment trapped behind the weir is periodically available for transportation at the rates and frequencies observed in this study, then we can infer that both structures must be trapping sediment under lower flows.


Assuntos
Ecossistema , Sedimentos Geológicos , Monitoramento Ambiental , Irlanda , Rios
14.
Sci Total Environ ; 762: 143915, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33360450

RESUMO

The degradation of aquatic ecosystems, induced by worldwide intensification in the use of both land and aquatic resources, has highlighted the critical need for innovative methods allowing an objective quantification and ranking of anthropogenic pressure effects on aquatic organisms. Such diagnostic tools have a great potential for defining robust management responses to anthropogenic pressures. Our objective was to explore how the outputs of three diagnostic tools (based on benthic diatoms, macroinvertebrates and fishes) could be combined to (i) disentangle the temporal effects of multiple pressures over two decades and (ii) provide policy-relevant information for stream managers and decision makers. The diagnostic tools estimated, using taxonomy- and trait-based metrics, the impairment probabilities of biotic assemblages over time by different pressure categories, describing the alteration of water quality, hydromorphology and land use related to anthropogenic activities, in French streams (number of sites = 312). The main result shows that a large proportion of the time series exhibited no significant temporal patterns over the two decades (61.5% to 87.8%, depending on the used tests). Among time series exhibiting significant change, positive trends in impairment probabilities (i.e., degradation) were less frequent than negative ones, indicating a modest improvement in water quality at national scale over the study period. However, trends can be substantially different according to hydroecoregion and pressure category. The three biological compartments displayed convergent temporal responses according to the pressure category and regional context (e.g., lowland plains vs. mountains, pristine vs. agricultural regions). Altogether, this study proposes a unifying approach to integrate a vast amount of information in a single ecological diagnosis using an unparalleled database on natural and anthropized environments. Strengthening the synthesis of biological information provided by various biological compartments should be a priority before implementing evidence-based sustainable conservation and restoration actions.


Assuntos
Diatomáceas , Rios , Animais , Ecossistema , Monitoramento Ambiental , Peixes , França , Invertebrados
15.
Glob Chang Biol ; 27(3): 606-623, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33159701

RESUMO

Non-native species introductions affect freshwater communities by changing community compositions, functional roles, trait occurrences and ecological niche spaces. Reconstructing such changes over long periods is difficult due to limited data availability. We collected information spanning 215 years on fish and selected macroinvertebrate groups (Mollusca and Crustacea) in the inner-Florentine stretch of the Arno River (Italy) and associated water grid, to investigate temporal changes. We identified an almost complete turnover from native to non-native fish (1800: 92% native; 2015: 94% non-native species) and macroinvertebrate species (1800: 100% native; 2015: 70% non-native species). Non-native fish species were observed ~50 years earlier compared to macroinvertebrate species, indicating phased invasion processes. In contrast, α-diversity of both communities increased significantly following a linear pattern. Separate analyses of changes in α-diversities for native and non-native species of both fish and macroinvertebrates were nonlinear. Functional richness and divergence of fish and macroinvertebrate communities decreased non-significantly, as the loss of native species was compensated by non-native species. Introductions of non-native fish and macroinvertebrate species occurred outside the niche space of native species. Native and non-native fish species exhibited greater overlap in niche space over time (62%-68%) and non-native species eventually replaced native species. Native and non-native macroinvertebrate niches overlapped to a lesser extent (15%-30%), with non-natives occupying mostly unoccupied niche space. These temporal changes in niche spaces of both biotic groups are a direct response to the observed changes in α-diversity and species turnover. These changes are potentially driven by deteriorations in hydromorphology as indicated by alterations in trait modalities. Additionally, we identified that angling played a considerable role for fish introductions. Our results support previous findings that the community turnover from native to non-native species can be facilitated by, for example, deteriorating environmental conditions and that variations in communities are multifaceted requiring more indicators than single metrics.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Biodiversidade , Peixes , Invertebrados , Itália , Rios
16.
Sci Total Environ ; 734: 139467, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32470662

RESUMO

In the context of increasing pressure on water bodies, many fish-based indices have been developed to evaluate the ecological status of rivers. However, most of these indices suffer from several limitations, which hamper the capacity of water managers to select the most appropriate measures of restoration. Those limitations include: (i) being dependent on reference conditions, (ii) not satisfactorily handling complex and non-linear biological responses to pressure gradients, and (iii) being unable to identify specific risks of stream degradation in a multi-pressure context. To tackle those issues, we developed a diagnosis-based approach using Random Forest models to predict the impairment probabilities of river fish communities by 28 pressure categories (chemical, hydromorphological and biological). In addition, the database includes the abundances of 72 fish species collected from 1527 sites in France, sampled between 2005 and 2015; and fish taxonomic and biological information. Twenty random forest models provided at least good performances when evaluating impairment probabilities of fish communities by those pressures. The best performing models indicated that fish communities were impacted, on average, by 7.34 ±â€¯0.03 abiotic pressure categories (mean ±â€¯SE), and that hydromorphological alterations (5.27 ±â€¯0.02) were more often detected than chemical ones (2.06 ±â€¯0.02). These models showed that alterations in longitudinal continuity, and contaminations by Polycyclic Aromatic Hydrocarbons were respectively the most frequent hydromorphological and chemical pressure categories in French rivers. This approach has also efficiently detected the functional impact of invasive alien species. Identifying and ranking the impacts of multiple anthropogenic pressures that trigger functional shifts in river biological communities is essential for managers to prioritize actions and to implement appropriate restoration programmes. Actually implemented in an R package, this approach has the capacity to detect a variety of impairments, resulting in an efficient assessment of ecological risks across various spatial and temporal scales.


Assuntos
Peixes , Rios , Animais , Ecossistema , Monitoramento Ambiental , França
17.
Sci Total Environ ; 716: 136908, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32069694

RESUMO

This paper presents an empirical study that uses the movement of RFID tracers to investigate the impacts of low-head dams on solid transport dynamics in coarse-bedded streams. Here we report on the influence of two structures located in Ireland's South-East, both of which indicate that particles greater than the reach D90 can be carried through and over low-head dams. This observation suggests that both structures may have reached a state of 'transient storage' as hypothesized by previous research. However, when the data were reinterpreted as fractional transport rates using a novel application of existing empirical relations, we observed patterns consistent with supply-limited conditions downstream. Expanding on existing conceptual models and mechanisms, we illustrate how a system may continue to exhibit supply-limited conditions downstream without the need for a net attenuation of sediment to occur indefinitely. We propose that once a transient storage capacity has been reached, the system then enters a state of dynamic disconnectivity where the long-term average sediment flux equals that under reference conditions, but now with the amplitude and wavelength of these sediment fluctuations having increased. We hypothesize that the time-lag associated with the reduced frequency of events competent enough to move bedload over the structure accounts for the time necessary to complete the 'fill' phase of the transient storage dynamic; a process that will continue until both the fill and flow thresholds are again met to allow the system to reenter the 'scour' phase. This model reconciles how a system may exhibit a sediment deficit for time intervals longer than those experienced under reference conditions. As water and sediment are the drivers of channel morphology and associated habitat units, the impact a structure has on a channel's sediment regime should therefore form part of any assessment regarding the prioritization of barriers for removal or remediation.

18.
Mar Pollut Bull ; 151: 110802, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056597

RESUMO

In assessing the overall status of individual water bodies the EU Water Framework Directive (WFD) requires member states to assess both ecological and chemical status. The ecological status of transitional and coastal (TraC) waters is based on the assessment of specific biological elements as well as supporting chemical, physico-chemical and hydromorphological elements. Hydromorphology of TraC waters is one of the basic features of marine and coastal ecosystems controlling the presence of biota. Human induced hydromorphological alterations and pressures can damage the ecology and functioning of aquatic ecosystems. Thirteen metrics were developed and combined to form a hydromorphological index, the Hydromorphological Quality Index (HQI). The index categorises a water body into 5 classes. Semi-qualitative and quantitative criteria were used to assign a morphological classification directly related to that of the WFD, i.e., high, good, moderate, poor and bad. Thirty-three transitional and coastal water bodies were assessed using HQI.


Assuntos
Ecossistema , Monitoramento Ambiental , Biota , Ecologia , Irlanda
19.
Environ Monit Assess ; 190(11): 658, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30343443

RESUMO

Despite hydromorphological pressure assessment is required by the European Water Framework Directive (WFD), there is not one commonly accepted method for this purpose. The extent of habitat alteration and naturalness loss is a major issue especially for heavily modified water bodies (HMWBs) in terms of their maximum ecological potential designation. In this research, a broadly used methodology in Central and Northern Europe, Lake Habitat Survey (LHS), is tested for the first time in Greece in two natural urban shallow lakes to estimate the extent of habitat modification and hydromorphological alteration. The LHS methodology was deployed using three different approaches (on foot, by boat, and remotely by satellite sensing), by two observers, to assess simultaneously the method's reproducibility and subjectivity and selecting the best approach. All three LHS deriving indices (Lake Habitat Quality Assessment-LHQA, Lake Habitat Modification Score-LHMS, and Alteration of Lake Morphology Scores-ALMS) for each approach and each observer were calculated. Both lakes were described as substantially changed in character, receiving multiple pressures and hosting habitats of impaired quality and degraded shores. The research revealed low level of consistency among the approaches but highlighted the method's objectivity since no statistically significant differences were found on indices between the two observers. LHS proved to be an easily applicable, useful tool for hydromorphological assessment in these two case studies and could be further applied as a WFD screening tool.


Assuntos
Monitoramento Ambiental/métodos , Lagos/análise , Ecologia , Ecossistema , Europa (Continente) , Grécia , Reprodutibilidade dos Testes , Inquéritos e Questionários
20.
J Environ Manage ; 206: 1135-1144, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029347

RESUMO

The goal of our review was to evaluate scientific outcomes connected to hydromorphology and Water Framework Directive by synthesizing the main themes based on keywords, research domains, and the spatial coverage of high visibility publications. These data were integrated into a social network analysis to understand the structure of science related to our topic. Thus, we investigated 183 articles and conference proceedings from the Web of Science Core Collection. Among the 505 authors keywords, the central ones in our network were Water Framework Directive, hydromorphology, macroinvertebrates, ecological status, water quality, reference conditions, and river. The characteristics of the network of keywords indicated that information developed around a few key-concepts linked to numerous peripheral keywords, which highlighted some main themes of research. Hydromorphology appeared mostly in articles with macroinvertebrates and river restoration, suggesting the acceptance of environmental-based paradigm in water bodies' management. Consequently, we expected to count the majority of publications in Environmental Sciences & Ecology research domain. Issues related to the society (e.g. public participation, stakeholders) didn't appear in our analysis. Publications covered especially European Union member states, the network being dominated by Germany, Italy, and UK in terms of both study area and authorship. Besides traditional scientific relations between Western and Northern European states, we also noticed numerous comparisons between Danube countries. To comment the position of these publications in the scientific world, we used the Article Influence Score, which was below the average for the main research domain of Environmental Sciences & Ecology, probably as a consequence of the regional cover and concern of the Water Framework Directive. Further, we recommend more connections between environmental and social sciences, as well as between countries and we encourage funding for open access publications in order to increase the visibility and influence of the topic of hydromorphology and Water Framework Directive both bibliometrically and for decision and policy makers.


Assuntos
Monitoramento Ambiental , Água , Ecologia , Alemanha , Itália , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...